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An analysis is presented of the shock-wave configurations which will occur when a 
plane shock is incident on a double wedge for which the second wedge may have a 
greater (concave caae) or a smaller (convex case) inclination than the first wedge. It 
is shown that seven different reflection processes may be expected depending on the 
Mach number of the incident shock Mi and the two wedge angles 6: and 0;. These 
processes may be defined by seven regions in the (8&, O;)-plane, for a given value of 
Mi. Each of the seven processes has been verified by sequences of shadowgraph and 
schlieren photographs. 

A shock-polar analysis of each of the seven processes has provided information 
about the pressure changes and the wave structures which develop immediately 
behind the main reflections along the wedge surfaces. These wave structures have 
been verified experimentally, and two types have been observed: one normal to the 
reflecting surface, and the other in the form of a regular reflection. The criteria to 
determine which of these configurations will occur have not yet been established. 

It is believed that the present study will be of value in predicting the loading of 
shock waves on structures, and may lead to a better understanding of shock 
reflections from concave and convex cylindrical surfaces. 

1. Introduction 
When a planar shock wave encounters a sharp compressive corner, such as the 

leading edge of a wedge, two different types of reflection may occur: regular reflection 
RR (figure 1 a) or Mach reflection MR (figure 1 b). Regular reflection consists of two 
shock waves, the incident shock i and the reflected shock r, which coincide on the 
wedge at the reflecti-on point Q. Mach reflection consists of four discontinuities, the 
incident shock i, the reflected shock r ,  the Mach stem m and the slipstream 8 ,  which 
coincide at the triple point T. Over a plane wedge the triple point moves along a 
straight line making an angle x with the wedge surface. The Mach stem is usually 
curved. 

For a given gas, the type of reflection which will occur depends on the strength 
of the incident shock, defined by the Mach number Mi, and on the wedge angle Ow. 

If a frame of reference is attached to the reflection point of a regular reflection or 
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FIGURE 1. Schematic illustration of (a) regular reflection, and (b) Mach reflection, i, incident shock 
wave; r, reflected shock wave; m, Mach stem; 8, slipstream; a, reflection point; T, triple point; 
&, reflecting wedge angle; x ,  triple point trajectory angle; #, angle of incidence; 0, angle of 
deflection; (0)-(3), thermodynamic states. 

the triple point of a Mach reflection, then the non-stationary regular or Mach 
reflection becomes pseudo-steady (Jones, Martin t Thornhill 1951), and the shock 
waves i, r and m can be treated using steady-flow theory. By considering these shock 
waves separately and using oblique-shock-wave relations with appropriate boundary 
conditions the equations of motion for regular and Mach reflection can be derived 
(Ben-Dor 1978). 

In the case of an inviscid regular reflection (figure 1 a )  when the frame of reference 
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is attached to the reflection point, the flow in state (0) moves towards the reflection 
in a direction parallel to the wedge surface and a t  an angle of incidence 4, to the 
incident shock. On paasing through the incident shock wave the flow is deflected 
towards the wedge surface by an angle el. The flow then passes through the reflected 
shock wave which deflects it back by an angle 8, to become again parallel to the wedge 
surface. Therefore, the boundary condition for a regular reflection is : 

e1-e2 = 0. (1) 

Thus the flow directions in states (0), (1) and (2) with respect to the trajectory of 
the reflection point, G, are: 

Sf = 0, 6: = el, and 8: = 8,-8, = 0, (2) 

respectively, where superscript G designates that 8 is measured with respect to the 
direction defined by the trajectory of G. 

In the case of Mach reflection (figure 1 b)  when the frame of reference is attached 
to the triple point T, the flow in state (0) moves towards the reflection in a direction 
parallel to the triple-point trajectory. The flow above the triple-point trajectory 
approaches the incident shock wave at an angle of incidence 4,. On passing through 
the incident shock the flow is deflected towards the wedge by an angle of 8,. It then 
passes through the reflected shock which deflects it back by an angle 8,, parallel to 
the slipstream. Below the triple-point trajectory the flow approaches the Mach stem 
at an angle of incidence +,, and is deflected towards the wedge by an angle 8,, also 
parallel to the sliphream. Since the flows in states (2) and (3) are parallel and 
separated by a slipstream across which there is no change of static pressure, the 
boundary conditions for the Mach reflection are: 

8,-8, = 8,, and P, = p3, (3) 

where P is the static pressure. Thus the flow directions in states (0), (l), (2), and (3) 
with respect to the trajectory of the triple point, T, are: 

e;=o; ey=e, ;  (4) 

8T = 8,-8,, and 8,T = 8,. 

Equations (3) and (4) give; 

eT = 8:. (5 )  

Kawamura & Saito (1966) suggested that, since the boundary conditions (1) and 
(3) are in terms of the flow deflection angles, 8, and pressures, P, the relationship 
between P and B may be of importance in understanding shock reflection phenomena. 
The graphical representation of the relationship between the pressure ratio, PIP,, 
across an oblique shock and the angle, 8, through which the flow is deflected by the 
shock for a fixed value of the Mach number of the incident flow, M,, is called a 
pressure-deflection shock polar. 

Figure 2 (a) represents the (P, 8)  polar solution of a regular reflection. All the flow 
deflection angles, OG, are measured with respect to the trajectory of the reflection 
point G (see figure l a ) .  State (0) is represented by the origin, where P = P, and 
8: = 0. The locus of all the flow states which can be obtained from state (0) by passing 
through any oblique shock wave is represented by the I polar. Consequently, state 
(1) of a regular reflection is represented on the Ipolar by the point P = 4 and OG = Of. 
The R polar is the locus of all the flow states which can be obtained from state (1) 
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FIGURE 2. (P,O) shock-polar solutions of (a) regular reflection (Mi = l.3,0w = Soo) and (b) Mach 
reflection (Mi = 2.5,6, = 40°, ,y = 5.29'). The flow states are labelled (0) ahead of the incident 
shock wave, (1) behind the incident shock wave, (2) behind the reflected shock wave and (3) behind 
the Mach stem. R is the reflected shock polar, and Z the polar for both the incident and Mach-atem 
shocks which encounter the same incident flow in a pseudo-steady frame of reference. 

by patwing through any oblique shock. Consequently, state (2)  which is obtained from 
state (1) by passing through the reflected shock wave is on the R polar. The boundary 
condition (2)  implies that Of = 0, therefore, state (2)  is represented by the point where 
the R polar intersects the P-axis (i.e. OG = 0) as illustrated in figure 2(a) .  

Figure 2(b) represents the (P,O) polar solution of a Mach reflection. All the 
deflection angles are measured with respect to the trajectory of the triple point (see 
figure 1 b). Again, state (1) behind the incident shock lies on the I polar and is the 
origin of the R polar, and state (2) ,  behind the reflected shock lies on the R polar. 
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FIGURE 3. Regions of possible types of reflection in the (Mi, O,)-plane. Mi is the incident-shock-wave 
Mach number, Ow the reflecting wedge angle, and Jf? the limiting Mach number separating weak 
and strong shocks. For y = $, M: = 1.4565. 

State (3) behind the Mach stem also lies on the I polar. Since the pressures and the 
flow directions with respect to the triple-point trajectory in states (2) and (3) are 
equal, states (2) and (3) are represented by the intersection of the I and R polars. 

Figure 3 illustrates the regions in the (Mi,O,)-plane in which the different types 
of reflection are possible or impossible. The regions are separated by curves A and 
B. Curve A describes the ‘detachment ’ criterion of von Neumann (1963), and curve 
B the ‘mechanical equilibrium’ criterion of Henderson & Lozzi (1975). Hornung, 
Oertel and Sandeman (1979) used a ‘corner signal’ concept to show that transition 
from regular to Mach reflection is best defined by the ‘sonic’ criterion, namely the 
condition when the signal speed behind the reflected shock equals that of the 
reflection point. The ‘sonic’ criterion is very close to the detachment criterion, 
particularly for strong shocks. 

For a given gas (i.e. value of the specific heat ratio, y )  there is a certain value of 
incident shock Mach number, M:, below which the ‘mechanical equilibrium’ criterion 
does not exist. Henderson & Woolmington (1983) have shown that for a diatomic gas, 
y = g, M: = 1.4565 and for a monatomic gas, y = %, M: = 1 .M87. Incident shock 
waves with Mach numbers in the range Mi < M: are called weak shocks and those 
in the range Mi > M: are called strong shocks. Figure 3 indicates that for weak shocks 
there is one region in which regular reflection is theoretically impossible (0, < et) 
and another region in which Mach reflection is theoretically impossible (0, > e“,“”,. 
The regions are separated by the detachment transition line 0, = ed,.t. However, for 
the strong shocks there is a region, 8, <et, in which regular reflection is 
theoretically impossible ; a region, 8, > e a e . ,  in which Mach reflection is theoretically 
impossible, and an additional region, et < 8, < in which both regular and 
Mach reflection are theoretically possible. Dewey & McMillin (1985) have shown that 
the rtssumption of pseudo-stationarity may not be valid for weak Mach reflections 
and that realistic shock polars cannot be drawn for this region. 

In  the case of truly unsteady flows, i.e. flows which cannot be made pseudo-steady 
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by a simple coordinate transformation, the wedge angle at which transition from 
regular to Mach reflection occurs depends on the geometry of the process itself. For 
example, the MR+RR transition over concave cylinders occurs at wedge angles 
greater than those predicted by the ‘mechanical equilibrium ’ transition line, and the 
RR -+ MR transition over convex cylinders occurs at wedge angles smaller than those 
predicted by the ‘detachment’ transition line. For both cases the transition angle also 
depends on the initial angle of incidence and the radius of curvature of the cylindrical 
wedges. Details of these reflection phenomena are described by Heilig (1969), 
Ben-Dor, Takayama & Kawauchi (1980), Itoh, Okazaki & Itaya (1981) and Dewey 
et al. (1983). To the best of our knowledge, no shock-wave phenomenon haa been 
recorded yet, in which the RR MR transition occurs at wedge angles in the range 

A suggested approach to the study of shock-wave reflections from concave and 
convex cylindrical surfaces is a consideration of the reflection from a double wedge 
with a single increase or decrease of the wedge angle. In  the present paper, seven 
different shock configurations resulting from the reflection of a planar shock wave 
over a concave or a convex double wedge are identified and investigated analytically 
and experimentally. 

A study of the reflection process over three of the seven possible double-wedge 
combinations was conducted by Ginzburg & Markov (1975). However, it will be 
shown that some of the schematic drawings in their paper, illustrating the wave 
configurations, are incorrect. This is probably due to the poor resolution of their 
photographic method. Some of their schematic drawings show confluence points of 
four shocks, which are known to be theoretically impossible (Courant & Friedrichs 
1948), and others fail to observe the details of the wave structure. 

Two of the possible Mach configurations over a concave double wedge have been 
studied by Matsuo, Aoki, Hirahara & Kondoh (private communication 1985) and 
their observations appear to be in agreement with the results presented here. 

ed,.t < et,. < e y e .  

2. Analysis 
The analysis presented below establishes all the reflection processes and ha1  shock 

configurations that are possible over any double-plane-wedge combination. A 
compressive and an expansive double wedge are illustrated in figures 4(a) and 4(b), 
respectively. The slopes of the first and second wedges are 0; and e&, respectively, 
and the slope of the second wedge with respect to the first is 

Aew = e;-e;. (6) 

The reflection over a double wedge depends on three parameters: the incident- 
shock-wave Mach number Mi, and the first and second wedge angles 6:. and &,. 

In the following analysis it will be assumed that: (i) the flow is two dimensional; 
(ii) the gas is perfect (p = pRT) and ideal (p = 0, k = 0); (iii) the flow over the first 
wedge is -pseudo-steady; (iv) the flow over the second wedge asymptotically 
approaches a pseudo-steady situation ; (v) the regular + Mach reflection transition 
follows the ‘detachment ’ criterion, and (vi) the incident shock waves are weak enough 
so that if the reflection over the first wedge is a Mach-type reflection, it is a single 
Mach reflection. Further assumptions concerning the Mach stems are given 
subsequently. 

For a given shock-wave Mach number there is an appropriate ‘detachment ’ wedge 
angle, Ct. If 6:. < et the shock wave reflects from the first wedge as a Mach 



Rejection of a plane e k k  wave over a dwuble wedge 489 

(a) Concave 

(b) Convex 

FIGURE 4. Two double wedge configurations, (a) concave and (b)  convex. 6: is the first wedge angle, 
Adw the second wedge angle with reapt  to the first wedge, and PW the second wedge angle. 

reflection, and if O& > e,.t it reflects over the first wedge as a regular reflection. The 
Mach or the regular reflection propagates up the wedge until it encounters the leading 
edge of the second wedge. If the incident shock wave has reflected as a Mach reflection 
over the first wedge, then the Mach stem of this reflection encounters the second 
wedge and reflects from it either as a Mach or as a regular reflection depending upon 
the size of the differential wedge angle, At&, and the Mach number of the Mach stem, 
Mm- 

In the following analysis it will be assumed that the Mach stem is straight and 
perpendicular to the wedge surface so that 

where x1 is the first triple-point trajectory angle (Ben-Dor 1980). Thus Mm > Mi, but 
the difference in Mach number is not large and it will therefore be assumed that 

For example, for Mi = 2.6 and t9& = 20’ the Mach reflection solution results in 
lyl = 12.88’, thus Mm = 2.902. The corresponding detachment wedge angles for Mi 
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FIQIJRE 5. The seven regions in the (Ok, Ok)-plane which identify the different reflection processes 
of a shock wave over a double wedge. 8; is the first wedge angle, A6, the second wedge angle with 
respect to the first wedge, 6; the second wedge angle, and et the detachment wedge angle 
corresponding to the incident shock wave Mach number, Mi. The reflection processes in each region 
are given in table 1 .  

and M ,  are 50.77" and 60.72", respectively. Similarly, for Mi = 1.775 and 8& = 20°, 
one obtains x1 = 16.17" and M ,  = 2.1 12. For this case the corresponding detachment 
wedge angles are 50.22 and 50.68. These two examples indicate that although the 
difference between the incident-shock-wave Mach number and the Mach-stem Mach 
number is about 15 %, the difference in the detachment angle for these shocks is only 
a fraction of a degree. Using the assumption of (8), it may be concluded that the Mach 
stem of the first Mach reflection reflects from the second wedge as a Mach reflection 
if, Ad, < et, and as a regular reflection if AO, > et. 

The lines 8& = et, 8; = et, A8, = 0 and A8, = et are all drawn in the 
(O&,O;)-plane shown in figure 5.  These boundary lines define seven regions with 
different reflection processes. Those regions above the diagonal, A8, = 0, are for a 
concave double wedge, and those below the diagonal are for a convex wedge. The 
reflection process in each region and a shock-polar solution which gives information 
about the pressure changes produced by the reflection process are presented, 
beginning with the simplest case and ending with the most complicated. 

The input data for the analysis were the incident-shock-wave Mach number, Mi 
and the double-wedge geometry, 8; and AOw. The analysis used the two-shock and 
the three-shock theories of von Neumann (1963) to determine the shock-wave angles 
and the thermodynamic properties behind the shocks for each reflection. The flow 
properties obtained from the solution were used to draw the shock polars shown 
subsequently, which are accurately drawn to scale. 
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A 

A 

FIGURE 6. Schematic illustration of the shock wave reflections over (a) the first and 
(b)  the second wedge for region 1 of figure 5. 

Region 1 
In this region AO, > 0 ;  O& > et, and 0; > Ct, and the reflection process is shown 

schematically in figure 6, with regular reflection over both wedges, but with different 
wave angles. The regular reflections can be considered by attaching frames of 
reference to the reflection points G, or G%, aa appropriate. 

In order to combine the shock polars of the two regular reflections on a single plot 
in the (P,OG1)-p1ane it is necessary to know the direction of G, with respect to G,, 
namely : 

O(G,, G,) = O;-O& = Ad,. (9) 

A shock-polar solution for a typical reflection process in region 1 is shown in figure 
7 for initial conditions of M ,  = 1.3, O& = 47' and Ae, = 13'. 
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FIQURE 7. The shock-polar solution of the shock-wave reflection process for region 1. The polars 
are drawn accurately for an incident shock with Mach number Mi = 1.3, and a double concave 
wedge with inclinations O& = 47' and = 60'. Icl, RG1 and PI, RGa are the incident and reflected 
shock polars for the pseudo-steady regular reflections over the first and second wedges, respectively. 

The IG1 and RG1 polars represent the regular reflection over the first wedge. Since 
the solution of the reflection over the second wedge is in a frame of reference rotated 
by the angle 8(G,,G,) with respect to the original frame of reference, the origin of 
the IG* and RGi shock-polars combination is located at = 8(G2, G,) = A@,. Since 
8; > 8$, the velocity of G, is greater than that of G,, and so the IGs polar is larger 
than the IG1 polar. The pressure behind the incident shock is the same for both 
reflections and so the points representing state (l), i.e. the origins of the RG1 and RG* 
polars, have the same ordinates in the (P, 8G1)-plane. 

The pressure P, in state (2) behind the reflected shock over the first wedge is given 
by the intersection of the RG1 polar with the pressure axis, i.e. point (2) in figure 7, 
and the pressure Ps in state (3) behind the reflected shock over the second wedge is 
given by the intersection of the RG* polar with the A6, ordinate, i.e. point (3). In  
general P, =+ P,, and as the incident shock moves from the first to the second wedge 
there will be a sudden change of pressure. 

According to Henderson & Lozzi (1975), 'If a pressure discontinuity occurs during 
transition then an unsteady wave of finite amplitude or a finite amplitude band of 
waves will be generated in the flow '. We may therefore expect that the reflection point 
on the second wedge will be followed by either compression waves (or a shock wave) 
or expansion waves depending upon whether the transition causes a sudden pressure 
decrease or increase. 

Figure 8 shows the theoretical pressure ratio behind the reflection point of a regular 
reflection as a function of the reflecting wedge angle 8, for a given incident shock 
Mach number Mi = 1.3. The pressure ratio p Z / p O  goes through a minimum at about 
8, = 60'. Consequently, in the double-wedge reflection process now being considered 
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FIQURE 8. The ratio, &/Po, of the pressurea behind and ahead of the reflection point of a regular 
reflection &B a function of the reflecting wedge angle, Ow, for an incident-shock-wave Mach number 
Mi = 1.3, calculated using two-shock theory. 

three pressure-change behaviours are possible. If, in the example for Ht = 1.3, 
6: = 50" and 6; = 60" then at  transition from the first to the second wedge the 
pressure behind the reflection point suddenly drops. However, if 6& = 60" and 
6; = 85' then at tmnsition the pressure behind the reflection point suddenly 
increases. There could also be a case for which there is no pressure change at transition 
e.g. 6k = 55" and 6; = 65.776". Thus, different flow patterns are to be expected 
behind the second reflection point according to these different pressure changes. 

Region 2 
In this region AO, < 0 ;  O& > %&, and 0: > et, and the reflection process is shown 

schematically in figure 9. The reflection is regular over both wedges, and can be made 
pseudo-stationary by attaching frames of reference to the points of reflection G, and 
Ga. The direction of the second reflection point Ga with respect to that of the first, 
G,, is given by 

and for a convex double wedge AO, is negative. 

10, for Mi = 1.3, OL = 60" and A9, = - 13". 

O(Ga, G,) = AO,. (10) 

A shock-polar solution for a typical reflection process in region 2 is shown in figure 
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A 

FIGURE 9. Schematic illustration of the shock-wave reflections over (a) the first and 
(a) the second wedge for region 2. 

The IG1, RG1 and IG:, RG* polars represent the solutions of the regular reflections 
over the first and second wedges, respectively, with the origin of IG: shifted by A/3* 
in the (P, OG1)-plane 80 that the IGs and RG: polars are now to the left of the IG1 and 
RG1 polars. The pressure in state (l) ,  behind the incident shock is identical for both 
frames of reference, and the two shock-polar combinations are bridged by the 
constant prkssure line 

The velocity of G, is greater than that of G, and so in the pseudo-steady frames 
of reference the velocity of the incident flow over the first wedge, is greater than 
that over the second, M 3 .  Therefore, the IG1 polar is larger than the PI polar. The 
polars again indicate that, in general, the pressure behind the reflected shock over 
the first wedge, P,, will be different from the pressure behind the reflected shock 
over the second wedge, P,, which should therefore be followed by either compression 
or expansion waves depending upon whether the pressure suddenly decreases or 
increases at transition from the first to the second wedge. 

which is dashed in figure 10. 
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FIGURE 10. The shock-polar solution of the shock-wave reflection process for region 2. "he polars 
are drawn accurately for an incident shook with Mach number Mi = 1.3, and a double convex wedge 
with inclinations 9& = 60" and = 47". la1, RG1 and p*, RG* are the incident and reflected shock 
polara for the pseudo-steady regular reflections over the first and second wedges, respectively. 

I / 

H-PL '. '. 
I I 
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e p  = 46.350 

FIQURE 11. Subregions of the different regular to regular reflection processes in regions 1 and 2. 
In subregions la and 2b  there will be a transition from high to low pressure behind the reflected 
shock (H-+L), and in subregions 1b and 2a, a transition from low to high pressure (L+H). 
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FIGURE 12. Schematic illustration of the shock-wave reflection process for region 3. (a) Mach 
reflection over the first wedge and (b)  Mach reflection over the second wedge. 

Figure 11 is an enlarged drawing of regions 1 and 2 of figure 5.  The added dashed 
line divides each region into two subregions l a  and b and 2a and b. In  subregions 
la  and 2b the reflection process involves a transition from a high-pressure regular 
reflection to a low-pressure regular reflection (H-t L) while in 1 band 2a, the transition 
is from a low-pressure regular to a high-pressure regular reflection (L -t H). Therefore 
in subregions l a  and 2b it is expected that the reflection over the second wedge will 
be followed by a shock or compression wave, while in subregions lb and 2a the second 
reflection is expected to be followed by an expansion wave. It is of interest to note 
that in region la  the pressure behind the reflected shock may be expected to drop 
as the shock pasaes a compressive corner and in region 2a the pressure may be 
expected to increase around an expansive corner. 

Region 3 
In  this region A& < 0; Ob < et, and 0; < et, and the reflection process is shown 

schematically in figure 12. There is a Mach reflection over both wedges, but with 
different wave angles, and a non-stationary transition region. The initial and final 
Mach reflections can be made pseudo-stationary by attaching frames of reference to 
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FIGURE 13. The shock-polar solution of the shock-wave reflection procese in region 3. The polars 
are drawn accurately for an incident shock with Mach number Mi = 2.6, and a double convex wedge 
with inclinations 9& = 60" and = 47". PI, RG1 and Pa, Roa are the incident and reflected shock 
xa = 8.27". PI, RTI and pa, RT* are the incident and reflected shock polam for the pseudo-steady 
Mach reflections over the first and second wedges, respectively. The polars are linked by a dashed 
line representing the constant pressure of state (1) behind the incident shock. 

the triple points T, and G. The direction of G with respect to the direction of the 
T,, is given by 

&T,,T,) = -(-AOw+xl-x*), (11) 

where x1 and xs are the triple-point trajectory angles with respect to the two wedges. 
A shock-polar solution for a typical reflection process in region 3 is shown in figure 

13. The incident-shock-wave Mach number is Mi = 1.25. It initially reflects aa a Mach 
reflection over the first wedge for which t)k = 40' and x1 = 5.29. AO, = - 10' and the 
Mach reflection over the second wedge for which 0: = 30°, has a triple-point 
trajectory angle xs = 8.27'. 

The Pa and RTi polars are plotted in the (P, OT1)-plane, with the origin of the IT* 
polar displaced by (AO, - x1 + xs). Since the inclination of the second triple-point 
trajectory is less than that of the first, the velocity of and 
the Mach number of the incident flow in the pseudo-steady frame of reference, M p  
will be less than that over the first wedge, M?. The IT* polar is therefore smaller 
than the IT1 polar. The two polars are again related by the pressure 4 behind the 
incident shock, shown aa a dashed line in the figure. It can be Been that the pressure 
behind the Mach stem over the second wedge, 4, will be less than the pressure behind 
the Mach stem over the first wedge, PB. Because the signal speed, i.e. the sound speed 
plus the particle velocity behind the Mach stem is greater than the speed of the Mach 
stem, any compression waves will overtake the Mach stem. It is expected, therefore, 
that after transition from the first to the second wedge, the Mach-stem shock initially 
will be stronger than that produced by an incident shock reflection from a single 
wedge with an inclination t9:, but will asymptotically approach that value. 

is less than that of 
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RGURE 

A 
14. Schematic illustration of the shock-wave reflection process for region 4. (a) 
reflection over the first wedge and (a) Mach reflection over the second wedge. 

Regular 

Region 4 
In  this region AOw < 0 ; O& > qt, and 0: < et, and the reflection process is shown 

schematically in figure 14. The incident shock reflects over the h t  wedge as a regular 
reflection (figure 14a) and upon encountering the second wedge there is a transition 
to a Mach reflection (figure 14b). The initial and final reflections can be made 
pseudo-stationary by attaching a frame of reference respectively to the reflection 
point Q, or the triple point T. 

The direction of the triple point T with respect to that of the reflection point a 
is given by 

O(T,Q) =-(-AO,-x). (12) 

A shock-polar solution for a typical reflection process in region 4 is shown in figure 
15. The incident shock wave (Mi = 2.5) reflects over the first wedge (O& = 60’) as a 
regular reflection. However, since AOw = -20°, the second wedge, O& = 40°, cannot 
support a regular reflection, and a Mach reflection with x = 5.29’ is finally established 
over it. 

The IG and RC shock polars represent the regular reflection over the first wedge, 
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FIGURE 15. The shock-polar solution of the shock-wave reflection process in region 4. The polars 
are drawn accurately for an incident shock with Mach number Mi = 2.5, and a double convex wedge 
with inclinations O& = 60" and PW = 40". The triple-point trajectory angle over the second wedge 
is x = 5.29'. p, RG and IT, RT are the incident and reflected shock polars for pseudo-steady regular 
and Mach reflections respectively over the first and second wedges. 

and the origin of the IT and RT shock polars, which represent the Mach reflection 
over the second wedge, are displaced by (AO, + x), which is negative. The constant 
pressure & behind the incident shock again bridges the two sets of polars. For this 
case the velocity of G is greater than that of T so that hff is greater than @ and 
the IG polar is larger than IT polar. 

In general the pressure PB behind the reflected shock over the first wedge will be 
different from the pressure p4 behind the Mach stem over the second wedge. A 
transition period is expected after the incident shock moves from the first to the 
second wedge with expansion or compression waves which will dissipate through the 
flow. It is not expected that these waves will persist as is predicted for the reflections 
in regions 1 and 2, and the Mach reflection over the second wedge will asymptotically 
approach that which would be produced if the incident shock had reflected from a 
single wedge with an inclination 0;. 

Region 5 
In this region AOW > 0;Oa < e",.";AO, > et, and 0: > et, and the reflection 

process is shown schematically in figure 16. The incident shock reflects over the first 
wedge as a Mach reflection (figure 16a). The Mach stem of this reflection reflects over 
the second wedge as a regular reflection (figure l6b) .  The triple point T and the 
reflection point G, of the Mach and regular reflections interact at point Q on the second 
wedge surface to form a new regular reflection, with reflection point a, (figure 16c). 

The reflections can be made pseudo-stationary by attaching frames of reference 
to the triple point T, or the points of reflection (7, and G,, as appropriate. The direction 
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FIGURE 16. Schematic illustration of the shock-wave reflection process for region 5. Q is the 
intersection of the triple-point trajectory with the second wedge. (a) Mach reflection over the first 
wedge, ( b )  regular reflection over the second wedge and (c) the shock configurations after the 
incident shock has passed Q. 
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FIQURE 17. The shock-polar solution of the shock-wave reflection process in region 5. The polars 
are drawn acurately for an incident shock with Mach number Mi = 2.5, and a double concave wedge 
with inclinations 9; = 15' and et, = 70'. The triple-point tra'ectory angle is x = 15.72', and the 

polars for the pseudo-steady Mach reflection over the first wedge. IG1, RG1 and IG*, w* are the 
incident and reflected shock polars of the pseudo-steady regular reflections over the second wedge, 
before and after the intersection of the triple-point trajectory with the second wedge, respectively. 
The dashed pa, RGa polars indicate the probable solution for the regular reflection which permits 
the pressure jump from state (4) to state (5) in figure 16. The polars are linked by the dashed lines 
representing the constant pressure in s t a h  (3) and (1) of figure 16. 

e T  

Mach number of the Mach stem shock is M, = 2.8. IT and R TI are the incident and reflected shock 

of the reflection points G, and G, with respect to the direction of the triple point T 
are given by 

tw1,n = Aew-x, (13) 

and B(C€,, T) = ABw-x. (14) 

A shock-polar solution for a typical reflection process in region 5 is shown in figure 
17. The incident shock wave (Mi = 2.5) reflects over the first wedge (0: = 15") as a 
Mach reflection with x = 15.72". The Mach number of the Mach stem of this reflection 
is M ,  = 2.8. Since ABw = 55", the Mach stem reflects over the second wedge as a 
regular reflection. Finally, the incident shock wave (Mi = 2.5) encounters the second 
wedge (0: = 70') from which it reflects regularly. 

The IT and RT shock polars represent the Mkh-reflection solution over the first 
wedge. Since the solutions of the two regular reflections over the second wedge are 
made from a frame of reference which is displaced by the angle B(Gl, T) or B(G,, T) 
with respect to the original frame of reference, the origins of the IG1, RC1 and the 
1% RGz shock polars, which repiesent the regular reflections over the second wedge 
are located at BT = B(Q,, T) = B(G,, T) = ABw-x. Since the pressures in states (1) 
and (3) are independent of the frame of reference from which the solution is carried 
out, the IT, RT and IG1, RC1 shock polars are bridged by the constant P, line, and the 
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FIGURE 18. Schematic illustration of the shock-wave reflection process for Fgion 6. (a) Mach 
reflection over the first wedge, (b)  Mach reflection over the second wedge and (c) Mach reflection 
over the second wedge after the incident shock has paased Q, the point of intersection of the two 
triple-point trajectories. 
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FIGURE 19. The shock-polar solution of the shock-wave reflection process in region 6. The polars 
are drawn accurately for an incident shock with Mach number Mi = 2.5, and for a double concave 
wedge with inclinations Ok = 20' and eB, = 40'. The Mach number of the Mach-stem shock over 
the first wedge is M, = 2.9, and the triple-point trajectory angles are x1 = 12.85", xp = 12.49' and 
xs = 5.29'. Z T 1  and RT1 are the incident and reflected shock polars of the pseudo-steady Mach 
reflection over the first wedge. IT*, RTS and I T S ,  RTa are the incident and reflected shock polars of 
the pseudo-steady Mach reflections over the second wedge, before and after the interaection of the 
triple-point trajectories, respectively. The polars are linked by the dashed lines representing the 
constant pressures in states (3) and (1) of figure 18. 

IT, RT and PI, RGa shock polars are bridged by the constant 4 line, which are dashed 
in figure 17. 

The shock polars in figure 17 indicate that the transition on the second wedge at 
point Q is associated with a sudden decreaae in the pressure from p4 behind GI to P5 
behind G,. It will be shown subsequently that this sudden pressure drop is supported 
by an additional regular reflection, that of the reflected shock wave of the Mach 
reflection over the first wedge. This secondary regular reflection follows the main 
regular reflection over the second wedge. This additional regular reflection is drawn 
schematically in figure 1S(c) with reflection point 4. It is expected that the overall 
pressure jump across this additional regular reflection should be close to P,/& A 
dashed lo., RGa polar combination representing this regular reflection is added to 
figure 17. 

It will be shown subsequently that as this secondary regular reflection propagates 
up the wedge its reflected shock catches up with its incident shock to finally form 
a single shock wave normal to the wedge surface. 

Region 6 
In  this region Ae, > 0; 0: < Ct; Ae, < et, and 0; < Ct, and the reflection 

process is shown schematically in figure 18. The incident shock reflects over the first 
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FIGURE 2O(a-c). For caption see facing page. 
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FIQURE 20. Schematic illustrahion of the shock-wave reflection process for region 7. (a) Mach 
reflection over the first wedge. (b) Mach reflection over the second wedge. Q is the intersection of 
the triple-point trajectories. (c) Inverse-Mwh reflection over the second wedge after the incident 
shock has paaaed Q. (d) Regular reflection over the second wedge after the third triple point T, haa 
reached the wedge surface. 

wedge as a Mach reflection (figure 18a), and the Mach stem of this reflection reflects 
from the second wedge also as a Mach reflection (figure 18b). The triple points T, and 
T, of these two Mach reflections, intersect at & to form a direct Mach reflection (figure 
18c), for which the triple point moves away from the second-wedge surface. Therefore, 
the Mach reflection is maintained. It is assumed that these three Mach reflections can 
be made pseudo-stationary by attaching frames of reference to their appropriate 
triple points. The directions of T, and T8 with respect to the direction of T, are given 
by 

O ( T , ,  T,) = Aew+Xe-X1, (15) 

and e(T,,T,) = A8,+x*-x1. (16) 

A shock-polar solution for a typical reflection process in region 6 is shown in figure 
19. The incident shock wave (Mi = 2.6) reflects over the first wedge (6; = 20') aa a, 
Mach reflection with x1 = 12.85'. The Mach number of the Mach stem of this 
reflection is M, = 2.9. Since Ae, = 20', the Mach stem reflects over the second wedge 
as a Mach reflection with xa = 12.42'. Finally, after the interaction between the two 
triple points, at &, the incident shock wave (Mi = 2.5) forms a Mach reflection over 
the second wedge (0; = 40°) with xa = 5.29'. 

The IT1 and RT1 polars represent the Mach reflection over the first wedge and the 
origins of the I*a, RTa and IT8, RTa polars, for the second and third Mach reflections 
are located at  8*1 = e(T,, T,) and 8*1 = e(3, T,) respectively. Since the pressures in 
states (1) and (3) are independent of the frame of reference, the I*I, R*I and IT2, RT2 
polars are bridged by the constant pB line, and the ITl, RT1 and ITa, RTa polars are 
bridged by the constant 4 line, which are dashed in figure 19. 
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FIQURE 21. The shock-polar solution of the shock-wave reflection process in region 7. The polars 
are drawn accurately for an incident shock with Mach numbers Mi = 2.5, and a concave double 
wedge with inclinations @: = 30', and 0; = 60'. The Mach number of the Mach-stem shock over 
the first wedge is M ,  = 3.15, and the triple-point trajectory angles are x1 = 8.27, x I  = 8.09' and 
xs = - 1.12'. ITi and RT1 are the shock polars for the pseudo-stationary Mach reflection over the 
first wedge. ITS,  RT* and P a ,  RTa are the shock polars for the pseudo-steady Mach reflections over 
the second wedge, before (direct-Mach) and after (inverse-Mach) the intersection of the triple-point 
trajectories;respectively. IG and RG are the shock polar8 for the ultimate pseudo-steady regular 
reflection over the second wedge. The dashed polar represents the probable solution for the normal 
shock which permita the pressure jump from state (8) to (9) in figure 20(d). The polars are linked 
by the dashed lines representing the constant pressures in states ( l ) ,  (3) and (7) of figure 20. 

The changes of pressure along the wedge from p5 to p7 at the time when the triple 
points q and T, interact at Q and form the third Mach reflection with a different Mach 
stem, will result in the generation of compression or expansion waves but these are 
expected to dissipate in the flow and not to persist as in regions 1 and 2. 

' Regwn 7 
In this region AOw > 0; O& < ct; AOw < et, and PW > ct, and the reflection 

process is shown schematically in figure 20. The incident shock reflects over the first 
wedge as a Mach reflection (figure 20a), and the Mach stem reflects from the second 
wedge also as a Mach reflection (figure 20b) .  The triple points 7 and T, intersect at 
Q to form a third Mach reflection (figure 20c). Unlike the reflection in region 6, the 
new triple point moves towards the second wedge surface, i.e. the Mach reflection 
is an inverse-Mach reflection (Takayama & Ben-Dor 1985). Upon colliding with the 
wedge surface, the inverse-Mach reflection transitions to a regular reflection, which 
continues to propagate up the wedge (figure 2 0 4 .  

It is assumed that the three Mach reflections and the final regular reflection can 
be made pseudo-stationary by attaching a frame of reference to the appropriate triple 
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points T,, T, or T,, or the reflection point G. The directions of T,, T, and G with respect 
to the direction of T, are given by 

4T, ,  T,) = Ae,+XZ-xl; (17) 

ecT,,q = - ( -ABw+xs+x l ) ,  (18) 

B(G, T,) = A8,-x1. (19) 
A shock-polar solution for a typical reflection process in region 7 is shown in figure 

21. The incident shock (Mi = 2.5) reflects over the first wedge (0; = 30') as a Mach 
reflection with x1 = 8.27'. Since he, = 30°, the Mach stem (32, = 3.15) reflects over 
the second wedge as a Mach reflection with x2 = 8.09'. Eventually, the two triple 
points intersect at Q and the incident shock (Mi = 2.5) propagates over the secondary 
wedge (6: = 60') from which it reflects regularly. 

The IT1, RT1 shock polars represent the Mach-reflection solution over the first 
wedge, and the origins of the ITs, RTa and IT3, RTa shock polars, which represent the 
second and the third Mach reflections are located at BT1 = B(T, ,  T') and @'I = B(T, ,  T,), 
respectively. Since the pressures in states (1) and (3) are independent of the frames of 
reference, the IT1, RT1 and ITz, RT: shock polars are bridged by the constant p3 line, 
and the IT1, RT1 and IT#, RT8 shock polars are bridged by the constant < line. Since 
the third Mach reflection is an inverse-Mach reflection, its polar solution (states 6 and 
7) takes place on the left part of the IT3 polar (for details see Takayama t Ben-Dor 
1985). For clarity, parts of the IT3 polar have been omitted from figure 21. 

The origin for the final regular reflection is at B T 1  = B(G, q). The IG, RG polar 
combination which represents the regular reflection is also bridged to the I T ] ,  RT1 
polars through the constant 8 line. 

The shock polars in figure 21 suggest that a sudden pressure drop will occur from 
p7 just before the termination of the inverse-Mach reflection, to 4, just after the 
formation of the regular reflection. It was found experimentally that, unlike the case, 
in region 5, where the sudden pressure drop is supported by a secondary regular 
reflection (figure 16c), here it is supported by a normal shock wave which follows the 
regular reflection. This normal shock wave is shown in figure 20(d). It is expected 
that the pressure jump across this normal shock wave should be close to P'IP,. A 
dashed polar representing this normal shock wave is added to figure 21. In  figure 20 
the state behind the normal shock wave is labelled as state ( S ) ,  and hence the pressure 
jump across it is <IPS, however states (9) and (6) and states (6) and (7)  are separated 
by slipstreams and hence P, = Po. 

3. Experimental investigations 
The reflection of plane shock waves from concave and convex double wedges was 

studied experimentally using the 7.6 cm x 25.4 cm shock tube of the Department of 
Physics at the University of Victoria, Canada, and the 7.6 cm x 12.7 cm shock tube 
of the Institute of High Speed Mechanics, Tohoku University, Japan. The objectives 
of the experimental studies were to establish the conditions for transition from regular 
to Mach reflection or Mach to regular reflection (RR e MR) for concave and convex 
double wedges; to verify the existence of the seven reflection processes predicted in 
the foregoing analysis, and to verify the predictions of the shock-polar analysis 
concerning the wave configurations following the major reflections. These objectives 
were achieved using various high-speed photographic techniques such as contact 
shadowgraphs, multi-frame schlieren and holographic interferometry. 

17 FLY 178 
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FIQURE 22. The angle of the second wedge at which transition from regular to Mach reflection 
waa observed, eg, a8 a function of Ae, for a concave double wedge: (a) weak shock wave 
Mi = 1.29f0.01. ( b )  strong shock wave Mi = 2.45f0.01. 
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FIGURE 23. The angle of the second wedge at which transition from regular to Mach reflection wm 
observed, OE, as a function of Agw for a convex double wedge and Mi = 1.29*0.01. 

4. RR Z+ MR transition wedge angle 
Using nominal incident-shock Mach numbers of 1.3 and 2.45, the angle of the 

second wedge at which RR MR occurred, was determined. Experiments were 
conducted using double wedges, similar to those shown in figure 4. Depending upon 
the final reflection which waa observed over the second surface, the second wedge 
angle, Ok, was increased or decreased by tilting the double wedge until the reflection 
over the second surface changed from MR to RR or from RR to MR. 

The lowest value of 0; for which RR was observed, and the highest value of 0: 
for which MR was observed were averaged to give an estimate of Stz and the associated 
uncertainty. 

In  the 'weak '-shock experiments there were small variations in the incident-shock 
Mach number from experiment to experiment but all were in the range 
1.28 < Mi < 1.30. The theoretical detachment transition wedge angle for this range 
of Mach numbers is 45.899'< et < 46.347'. The wedge angles, O$, at which 
transition was observed on the second wedge are plotted as a function of AeW for a 
concave double wedge in figure 22(a). At AO, = 0, i.e. the case of a straight single 
wedge, the measured value of Stz is about 1.5' smaller than the theoretical detachment 
value. This observation is in accordance with experimental results of many other 
investigators and is probably due to boundary-layer effects. The same value is 
obtained at AOw = 44.5' which again represents the case of a single straight wedge, 
since for this case 0; = 0. 

For the specific incident-shock Mach mumber of these experiments, 
Mi = 1.29+ 0.01, the transition angle, Stg reaches a maximum of approximately 49.5' 
for a double wedge with AeW = 25'. It is interesting to note that in the range 
0 < AO, < 25' there appears to be a linear relationship between Stg and Adw. The 

17-2 



510 a. Ben-DOT, J .  M .  Dewey and K .  Takayama 

4 

0" 
s:, 

FIQURE 24. Actual regions and transition boundaries of the seven different reflection processes 
for an incident shock wave with M, = 1.29kO.01 over a double wedge. 

overall relationship between @: and AB, for a concave double wedge may be 
compared with that between @: and R, the radius of curvature of a concave 
cylindrical wedge for which the transition angle is also greater than that over a single 
plane wedge (Ben-Dor et al. 1980). 

The measured transition wedge angles for a strong shock wave (Mi > M:) over a 
concave double wedge are shown in figure 22(b). For these cases Mi = 2.45+0.01. 
The transition wedge angles for AO, = 0 and AB, = 49' which correspond to a single 
straight wedge are about 1.7" below the value predicted by the 'detachment ' criterion (et = 50.77'). This persistence is probably due to boundary-layer effects. As AO, 
increases the transition wedge angle becomes higher until it reaches a maximum of 
@: = 59.5" at AOw = 30'. This value of @; is greater than the 'mechanical-equili- 
brium' transition wedge angle for this Mach number (BE.". = 58'). For A@, > 30' the 
transition wedge angle decreases until it  reaches the value appropriate to a single 
wedge at AB, = 49'. It should be noted that for this case of a strong incident shock 
wave the transition wedge angles lie between the 'detachment' and the 'mechanical- 
equilibrium ' transition wedge angles. To the best of our knowledge this is the first 
time that the RR*MR transition has been observed in this range of wedge angle. 

Figure 23 shows the observed transition wedge angles, @:, as a function of AO, for 
a convex double wedge and an incident shock Mach number of 1.29k0.01. In this 
case AB, = 0 corresponds to the single wedge case with @! = 44.5'. For decretlsing 
values of 88, the transition angle decreased to a minimum of about 43.25' for AO, 
in the range from - 20' to - 35O, and then returned to 44.5' a t  AO, = -45.5", which 
also corresponds to a single straight wedge. The variation of @: with A6, over a 
convex double wedge may be compared with the variation of BE with the radius of 
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FIGURE 25. Shadowgraph illustrating the reflection on the second wedge, following a regular 
reflection on the first wedge for a double wedge in region 1.6: = 55' and 6; = 75". 

curvature of a convex cylinder for which the observed transition angle is also less 
than the theoretical detachment angle, et, and the observed transition angle on a 
straight wedge (Ben-Dor et al. 1980). 

The observed transition wedge angles presented in figures 22 (a)  and 23 were used 
to modify the boundaries between regions 6 and 7, and 2 and 4 in figure 5, and the 
modification is presented as figure 24. 

5. Experimental verification of the reflection processes 
Experiments were carried out using combinations of wedge angles representative 

of each of the seven regions defined by figure 24, using a nominal incident-shock Mach 
number of 1.3. The shock reflections were observed using two photographic methods: 
multiple double-pass laser schlieren at a framing rate of approximately 20000 p.p.s., 
and single-frame contact shadowgraphy. In each case the exposure time per frame 
was approximately 50 ns. The shadowgraphs produced very high quality distortion- 
less pictures, but they did not reveal details of the density variations behind the 
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FIGURE 26. Schlieren photograph illustrating the reflection on the second wdge following a regular 
reflection on the first wedge for a double wedge in region 2. 6; = 65' and eS, = 50'. Details of the 
wave structure behind the second regular reflection can be seen. 

shocks to the same degree as the schlieren photographs. The double-pass schileren 
system has been described by Dewey & Walker (1975). The normally reflecting mirror 
in this system has a 1 cm grid of small holes through which smoke can be injected 
as a flow tracer. Smoke was not used in the experiments discussed here, but the holes 
served as a grid of fiducial markers. 

Region 1 
The final reflection process in this region is shown in figure 25 for 0& = 55" and 

0: = 75". The regular reflection over the first wedge encounters the second com- 
pressive wedge, and the flow is compressed. The compression waves generated at the 
corner merge into two circular shock waves. One propagates upstream and follows 
the reflection point of the regular reflection and the other propagates downstream. 
They are both perpendicular to the wedge surface. These two circular shock waves 
interact with the reflected shock wave of the second and first regular reflections to 
form two triple points. The slipstreams of these triple points coincide at a point on 
the wedge. This point propagates upstream along the second wedge surface. The 
information about the change in the slope of the surface is probably bounded by these 
two shock waves. 
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FIQURE 27. Schlieren photograph illustrating the Mach reflection on the second wedge following 
a Mach reflection on the first wedge for a double wedge in region 3. 0; = 35O and 0: = 15'. The 
effects of the expmsion wave generated when the Mach reflection moves from the first to the second 
wedge can be seen. 

Region 2 
The h a 1  reflection process in this region is shown as a schlieren photograph in figure 

26 for O& = 65" and 0: = 50". The regular reflection over the first wedge encountered 
an expansive corner which generated expansion waves, which can be seen in the 
figure, one propagating downstream just behind the reflection point, and the other 
propagating upstream along the first wedge. The combination of O& and 6% in this 
experiment lies in region 2 a of figure 11 and it is expected that the pressure in the 
small region behind the reflected shock and the rarefaction is at a higher pressure 
than behind the reflected shock on the first wedge. 

Region 3 
The schlieren photograph of the unsteady wave system, generated when the first 

Mach stem encounters the sudden change in the slope of the surface is shown in figure 
27 for Ok = 35' and 0% = 15". A rarefaction wave is seen to be travelling backwards 
carrying the information about the sudden change in the model geometry. This corner 
signal causes the readjustment of the wave angles of the second Mach reflection 
needed to negotiate the new slope of the second wedge. As the rarefaction produced 
at the corner advanced up the first Mach stem it  produced a weaker shock over the 
second surface. The contact surface separating the gases behind the stronger and 
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FIGURE 28. Shadowgraph of the Mach reflection on the second wedge, following a regular 
reflection on the first wedge for a double wedge in region 4:  &., = 60" and 8; = 30". 

FIGURE 29 (a, b ) .  For caption Bee facing page. 
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FIGURE 29. Shadowgraphs illustrating the reflection process over a double wedge in region 5. 
0; = 20" and 0: = 75". (a) Mach reflection over the first surface. (b) The reflection of the Mach stem 
as a regular reflection from the second surface. (c) The wave structure immediately after the 
interaction between the triple point of the Mach reflection and the reflection point of the regular 
reflection. (d) The final regular reflection over the second surface followed by a regular reflection 
of the reflected shock of the Mach reflection which ww terminated earlier. (e) The degeneration 
of the secondary regular reflection into a normal shock wave. 
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weaker shocks, until the rarefaction reached the triple point, can be clearly seen in 
figure 27. 

Region 4 
The final reflection process in this region is shown in figure 28 for 0a = 60' and 

0; = 30'. The regular reflection over the first surface encounters the sudden change 
in the slope and forms a Mach reflection over the second surface. The rarefaction wave 
generated at the corner, carries the information about the sudden change in the wedge 
geometry and causes the reflection to adjust its wave angles to negotiate the new slope 
of the second wedge. 

Region 5 
The reflection process in this region is shown in figure 29(a-e) for /3k = 20' and 

0; = 75'. The Mach reflection over the first wedge is shown in figure 29a. Its collision 
with the second wedge results in a regular reflection (figure 29b). The triple point of 
the Mach reflection over the first wedge and the reflection point of the regular 
reflection of the Mach stem over the second wedge interact on the second wedge. 
Figure 29 ( c )  was recorded shortly after this interaction. The reflected shock wave of 
the Mach reflection now lags behind the incident shock wave. A clearer configuration 
of the wave system at a later time is shown in figure 29(d). The incident shock wave 
reflects from the second surface regularly. The reflected shock of the original Mach 
reflection reflects regularly from the second surface, and follows the major regular 
reflection. As this secondary regular reflection propagates along the wedge the wave 
angles of the incident and reflected shocks change until they merge together and form 
a single shock normal to the reflection surface, as shown in figure 29(e). 

Region 6 
The reflection process in this region is shown in figure 30(a-c) for 0k = 15" and 

0; = 35'. The Mach stem of the Mach reflection over the first wedge reflects from 
the second wedge also as a Mach reflection (figure 30b). The two triple points later 
interact (figure 30b) resulting in a direct Mach reflection of the incident shock wave 
over the second wedge. A second triple point is formed at the intersection of the two 
reflected shocks, as shown in figure 30(c), but the slipstream from this triple point 
is not visible in the shadowgraph. 

Region 7 
The reflection process in this region is shown in figure 31 (a,  b) for 0k = 25' and 

0; = 60'. The Mach stem of the Mach reflection over the first wedge reflects over the 
second wedge as a Mach reflection (figure 31 a ) .  The two triple points interact to give 
an inverse-Mach reflection (Takayame & Ben-Dor 1986), i.e. its triple point 
propagates towards the second wedge surface. When it meets the second surface the 
inverse-Mach reflection terminates and a regular reflection is formed, as shown in 
figure 31 (b). The reflection is followed by a shock wave which is perpendicular to the 
second wedge surface, and which meets the reflected shock at a triple point. Another 
triple point is generated by the reflected shock waves of the two Mach reflections. 
The slipstreams of the two triple points can be seen in the shadowgraph of 
figure 31 (b). 

The final wave configuration shown in figure 31(b) is similar to the one finally 
obtained through the reflection process of region 5. However, the normal shock wave 
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FIGURE 30. Shadowgraphs illustrating the reflection process over a double wedge in region 6. 
O& = 1.5' and 19; = 35'. (a) The reflection of the Mach stem from the first wedge over the second 
surface as a Mach reflection. ( b )  The interaction of the two triple points. (c) The final Mach reflection 
over the second wedge surface. 



518 G. Ben-Dor, J .  M .  Dewey and K .  Takayamu 

FIQUBE 31. Shadowgraphs illustrating the reflection process over a double wedge in region 7 .  
&, = 25" and O$ = 60". (a) The reflection of the Mach stem from the first wedge over the second 
surface aa a Mach reflection. ( b )  The final reflection over the second surface followed by a normal 
shock wave. 
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OW, O W ,  AOw First surface Second surface Region 

Convex >det  >det  - Regular Regular 2 
<det  <det  - Mach Mach 3 
> det < det - Regular Mach 4 

Concave >det  >det  - Regular Regular 1 

< det > det < det Mach Mach + Regular 7 

< det > det > det Mach Regular + Regular 5 
< det < det < det Mach Mach +Mach 6 

TABLE 1. A summary of the seven different reflection processes which can occur over convex and 
concave double wedges depending on the magnitude of the wedge angles O&, 6; and AOw compared 
to the detachment wedge angle et (referred to simply as ‘det’ above). The numbers in the final 
column refer to the regions in the Oh, 0; plane of figure 5. 

in region 6 was established at the moment the inverse-Mach reflection terminated a t  
the wedge surface, while in region 5 the initial reflection is a regular reflection which 
degenerates into a normal shock wave. 

6. Conclusions 
The reflection processes of a plane shock wave over a concave or convex double 

wedge, have been analysed using the basic concepts of the reflection of a plane shock 
wave over a single wedge. It was found that there are seven different reflection 
processes, which are summarized in table 1. 

To simplify the analysis of the shock reflection processes a number of assumptions 
were made, namely, that transition between regular and Mach reflection would take 
place according to the theoretical ‘detachment ’ criterion; that all Mach stems would 
be straight, and that the same ‘detachment’ transition angle could be used for both 
the incident and Mach stem shock waves. It is known that transition between regular 
and Mach reflection over a wedge does not occur at the angle predicted by theory; 
that for most shock strengths the Mach stem shock is curved, and that there will 
be a slight difference in the transition angle for the incident and Mach stem shock 
waves. Nevertheless we believe that the shock reflection processes described here are 
qualitatively correct. 

For each of the seven reflection processes a shock-polar analysis was carried out. 
These analyses have provided information about the detailed wave structures 
following the main reflections along the wedge surfaces, and have made it possible 
to identify the sudden pressure changes as the reflections moved from the first to  the 
second wedge. The different reflection processes predicted by the analysis, and the 
shock structures predicted by the shock polars have all been verified experimentally 
using shadowgraph and schlieren photographs. The shock waves which support the 
sudden pressure changes produced by some of the transitions and predicted by the 
shock-polar solutions, have been observed. In  some cases these shocks are normal to 
the reflecting surface and in other cases they are regularly reflected shocks. The 
criteria to determine which of those configurations will occur, have not yet been 
established, but are the subject of continuing studies. 
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